
OPENCL PROGRAMMING AND
OPTIMIZATION – PART II

HAIBO XIE, PH.D.
haibo.xie@amd.com

mailto:haibo.xie@amd.com

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC2

OPENCL PERFORMANCE CONSIDERATION ON GPUS

 CPU + dGPU with OpenCL has obvious bottlenecks

‒ CPU/GPU data movement is a side effect

‒ dGPU has limited memory size

‒ CPU + dGPU has seeable overhead of cooperation under OpenCL runtime

 Try to narrow the side effects down as much as possible

‒ CPU/GPU data movement over PIC-E or other bus is the introduced overhead

‒ Double buffering or APU platform is the ideal technology to reduce the overhead

 Ideas to tune overall system performance should be paid attention

‒ Double buffering for dGPU

‒ APU platform for eliminating CPU/GPU data movement

‒ HSA technique gives CPU/GPU cooperation a more harmonious way

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC3

AGENDA

 OpenCL system performance

‒ CPU/GPU data movement

‒ OpenCL runtime overhead

 APU architecture and OpenCL optimization

 HSA and OpenCL optimization

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC4

CPU/GPU DATA MOVEMENT

 For normal CPU + dGPU platform, a single buffer for computing and data movement looks like the below

 There’s additional time consuming for CPU <-> GPU data movement which is introduced side effect

 This side effect is even worse in the case that:

‒ Data movement time is significantly larger than Kernel time

‒ Or Data movement time is even larger than CPU computing time

Data in Compute Data out Data in Compute Data out

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC5

OPENCL APPLICATION OPTIMIZATION

 Very useful common technique

‒ One buffer is computing while another buffer is filled in data

‒ To overlap the time of computing and the time of CPU/GPU data movement

‒ Especially useful for CPU + dGPU platform

 With AMD OpenCL implementation, DMA is asynchronous

‒ Use two command queue, one for buffer en-queue operation and another for Kernel operation

‒ Use event to synchronize

DOUBLE BUFFERING

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC6

DOUBLE BUFFERING

 We can introduce double buffering technique for GPU offload computing mode

 For the above N times Kernel invocation

‒ We can reduce N-1 times data movement time

Data in Compute Data out

Data
in

Data
out

Data
in

Data
in

Compute

Data
out

Compute

Data
out

Compute

Data
in

Data
out

Compute

Data in Compute Data out

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC7

COMMAND QUEUES

 We need to measure the performance of an application as a whole and not just our optimized kernels to
understand bottlenecks

 This necessitates understanding of OpenCL synchronization techniques and events

 Command queues are used to submit work to a device

 Two main types of command queues

‒ In Order Queue

‒ Out of Order Queue

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC8

IN-ORDER EXECUTION

 In an in-order command queue, each command executes after the previous one has finished

‒ For the set of commands shown, the read from the device would start after the kernel call has finished

 Memory transactions have consistent view

Command Queue

clEnqWrite clEnqReadEnqNDRange

Time

clEnqueueNDRangeKernel (queue, kernel0, 2,0, global_work_size, local_work_size, 0,NULL,NULL)

clEnqueueWriteBuffer (queue , d_ip, CL_TRUE, 0, mem_size, (void *)ip, 0, NULL, NULL)

Commands To Submit

clEnqueueReadBuffer(context, d_op, CL_TRUE, 0, mem_size, (void *) op, NULL, NULL,NULL);

Device 0

Mem

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC9

OUT-OF-ORDER EXECUTION

 In an out-of-order command queue, commands are executed as soon as possible, without any ordering
guarantees

 All memory operations occur in single memory pool

 Out-of-order queues result in memory transactions that will overlap and clobber data without some form
of synchronization

 The commands discussed in the previous slide could execute in any order on device

Command Queue

EnqWrite

EnqNDRange

EnqRead

Time

Device 0

Mem

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC10

SYNCHRONIZATION IN OPENCL

 Synchronization is required if we use an out-of-order command queue or multiple command queues

 Coarse synchronization granularity

‒ Per command queue basis

 Finer synchronization granularity

‒ Per OpenCL operation basis using events

 Synchronization in OpenCL is restricted to within a context

 This is similar to the fact that it is not possible to share data between multiple contexts without explicit
copying

 The proceeding discussion of synchronization is applicable to any OpenCL device (CPU or GPU)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC11

OPENCL COMMAND QUEUE CONTROL

 Command queue synchronization methods work on a per-queue basis

 Flush: clFlush(cl_commandqueue)

‒ Send all commands in the queue to the compute device

‒ No guarantee that they will be complete when clFlush returns

 Finish: clFinish(cl_commandqueue)

‒ Waits for all commands in the command queue to complete before proceeding (host blocks on this call)

 Barrier: clEnqueueBarrier(cl_commandqueue)

‒ Enqueue a synchronization point that ensures all prior commands in a queue have completed before any further
commands execute

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC12

SYNCHRONIZATION FOR CLENQUEUE FUNCTIONS

 Functions like clEnqueueReadBuffer and clEnqueueWriteBuffer have a boolean parameter to determine if
the function is blocking

‒ This provides a blocking construct that can be invoked to block the host

 If blocking is TRUE, OpenCL enqueues the operation using the host pointer in the command-queue
‒ Host pointer can be reused by the application after the enqueue call returns

 If blocking is FALSE, OpenCL will use the host pointer parameter to perform a non-blocking read/write and
returns immediately
‒ Host pointer cannot be reused safely by the application after the call returns

‒ Event handle returned by clEnqueue* operations can be used to check if the non-blocking operation has completed

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC13

OPENCL EVENTS

 Previous OpenCL synchronization functions only operated on a per-command-queue granularity

 OpenCL events are needed to synchronize at a function granularity

 Explicit synchronization is required for

‒ Out-of-order command queues

‒ Multiple command queues

 OpenCL events are data-types defined by the specification for storing timing information returned by the
device

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC14

OPENCL EVENTS

 Profiling of OpenCL programs using events has to be enabled explicitly when creating a command queue
‒ CL_QUEUE_PROFILING_ENABLE flag must be set

‒ Keeping track of events may slow down execution

 A handle to store event information can be passed for all clEnqueue* commands
‒ When commands such as clEnqueueNDRangeKernel and clEnqueueReadBuffer are invoked timing

information is recorded at the passed address

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC15

USES OF OPENCL EVENTS

 Using OpenCL Events we can:

‒ time execution of clEnqueue* calls like kernel execution or explicit data transfers

‒ use the events from OpenCL to schedule asynchronous data transfers between host and device

‒ profile an application to understand an execution flow

‒ observe overhead and time consumed by a kernel in the command queue versus actually executing

 Note: OpenCL event handling can be done in a consistent manner on both CPU and GPU for AMD and
NVIDIA’s implementations

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC16

CAPTURING EVENT INFORMATION

 clGetEventProfilingInfo allows us to query cl_event to get required counter values

 Timing information returned as cl_ulong data types

‒ Returns device time counter in nanoseconds

cl_int clGetEventProfilingInfo (
cl_event event, //event object
cl_profiling_info param_name, //Type of data of event
size_t param_value_size, //size of memory pointed to by param_value
void * param_value, //Pointer to returned timestamp
size_t * param_value_size_ret) //size of data copied to param_value

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC17

EVENT PROFILING INFORMATION

 Table shows event types described using cl_profiling_info enumerated type

cl_int clGetEventProfilingInfo (
cl_event event, //event object
cl_profiling_info param_name, //Type of data of event
size_t param_value_size, //size of memory pointed to by param_value
void * param_value, //Pointer to returned timestamp
size_t * param_value_size_ret) //size of data copied to param_value

Event Type Description

CL_PROFILING_COMMAND_QUEUED Command is enqueued in a command-queue by
the host.

CL_PROFILING_COMMAND_SUBMIT Command is submitted by the host to the device
associated with the command queue.

CL_PROFILING_COMMAND_START Command starts execution on device.

CL_PROFILING_COMMAND_END Command has finished execution on device.

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC18

CAPTURING EVENT INFORMATION

 clGetEventInfo can be used to return information about the event object

 It can return details about the command queue, context, type of command associated with events,
execution status

 This command can be used by along with timing provided by clGetEventProfilingInfo as part of a high level
profiling framework to keep track of commands

cl_int clGetEventInfo (
cl_event event, //event object
cl_event_info param_name, //Specifies the information to query.
void * param_value, //Pointer to memory where result queried is returned
size_t * param_value_size_ret) //size in bytes of memory pointed to by param_value

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC19

USER EVENTS IN OPENCL

 OpenCL defines a user event object. Unlike clEnqueue* commands, user events can be set by the user

 When we create a user event, status is set to CL_SUBMITTED

 clSetUserEventStatus is used to set the execution status of a user event object. The status needs to be set
to CL_COMPLETE

 A user event can only be set to CL_COMPLETE once

cl_event clCreateUserEvent (
cl_context context, //OpenCL Context
cl_int *errcode_ret) //Returned Error Code

cl_mem clSetUserEventStatus (
cl_event event, //User event
cl_int execution_status) //Execution Status

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC20

USING USER EVENTS

 A simple example of user events being triggered and used in a command queue

//Create user event which will start the write of buf1
user_event = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ..., 1, &user_event , NULL);

//The write of buf1 is now enqued and waiting on user_event
X = foo(); //Lots of complicated host processing code

clSetUserEventStatus(user_event, CL_COMPLETE);
//The clEnqueueWriteBuffer to buf1 can now proceed as per OP of foo()

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC21

WAIT LISTS

 All clEnqueue* methods also accept event wait lists

‒ Waitlists are arrays of cl_event type

 OpenCL defines waitlists to provide precedence rules

 Enqueue a list of events to wait for such that all events need to complete before this particular command
can be executed

 Enqueue a command to mark this location in the queue with a unique event object that can be used for
synchronization

err = clWaitOnEvents(1, &read_event);

clEnqueueWaitListForEvents(cl_command_queue , int, cl_event *)

clEnqueueMarker(cl_command_queue, cl_event *)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC22

EXAMPLE OF EVENT CALLBACKS

 OpenCL 1.1 allows registration of a user callback function for a specific command execution status

‒ Event callbacks can be used to enqueue new commands based on event state changes in a non-blocking manner

‒ Using blocking versions of clEnqueue* OpenCL functions in callback leads to undefined behavior

 The callback takes an cl_event, status and a pointer to user data as its parameters

cl_int clSetEventCallback (
cl_event event, //Event Name
cl_int command_exec_type , //Status on which callback is invoked
void (CL_CALLBACK *pfn_event_notify) //Callback Name
(cl_event event, cl_int event_command_exec_status, void *user_data),
void * user_data) //User Data Passed to callback

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC23

AMD EVENTS EXTENSION

 OpenCL event callbacks are valid only for the CL_COMPLETE state

 The cl_amd_event_callback extension provides the ability to register event callbacks for states
other than CL_COMPLETE

 Lecture 10 discusses how to use vendor specific extensions in OpenCL

 The event states allowed are CL_QUEUED, CL_SUBMITTED, and CL_RUNNING

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC24

USING EVENTS FOR TIMING

 OpenCL events can easily be used for timing durations
of kernels.

 This method is reliable for performance optimizations
since it uses counters from the device

 By taking differences of the start and end timestamps
we are discounting overheads like time spent in the
command queue

clGetEventProfilingInfo(event_time,
CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &starttime, NULL);

clGetEventProfilingInfo(event_time,
CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endtime, NULL);

unsigned long elapsed =
(unsigned long)(endtime - starttime);

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC25

PROFILING USING EVENTS

 OpenCL calls occur asynchronously within a
heterogeneous application

 A clFinish to capture events after each function
introduces interference

 Obtaining a pipeline view of commands in an OpenCL
context

‒ Declare a large array of events in beginning of application

‒ Assign an event from within this array to each clEnqueue* call

‒ Query all events at one time after the critical path of the
application

Application Function 1

Event Logging Framework

cl_event event_list[N]

N = estimated no.
of events in
application

clEnqueueNDRangeKernel(
kernel1,
&event_list[i]);

Application Function 2

clEnqueueNDRangeKernel(
kernel2,
&event_list [i+1]);

&event_list [i] &event_list [i+1]

Event logging framework can query and format data
stored in event_list

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC26

PROFILING WITH EVENT INFORMATION

 Before getting timing information, we must make sure that the events we are interested in have
completed

 There are different ways of waiting for events:
‒ clWaitForEvents(numEvents, eventlist)

‒ clFinish(commandQueue)

 Timer resolution can be obtained from the flag CL_DEVICE_PROFILING_TIMER_RESOLUTION
when calling clGetDeviceInfo()

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC27

EXAMPLE OF PROFILING

 A heterogeneous application can have multiple kernels and a large amount of host device IO

 Questions that can be answered by profiling using OpenCL events

‒ We need to know which kernel to optimize when multiple kernels take similar time ?
‒ Small kernels that may be called multiple times vs. large slow complicated kernel ?

‒ Are the kernels spending too much time in queues ?

‒ Understand proportion between execution time and setup time for an application

‒ How much does host device IO matter ?

 By profiling an application with minimum overhead and no extra synchronization, most of the
above questions can be answered

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC28

ASYNCHRONOUS I/O

 Overlapping host-device I/O can lead to substantial application level performance improvements

 How much can we benefit from asynchronous IO

 Can prove to be a non-trivial coding effort, Is it worth it ?

‒ Useful for streaming workloads that can stall the GPU like medical imaging where new data is generated and
processed in a continuous loop

‒ Other uses include workloads like linear algebra where the results of previous time steps can be transferred
asynchronously to the host

‒ We need two command queues with a balanced amount of work on each queue

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC29

ASYNCHRONOUS I/O

 Asymptotic Approximation of benefit of asynchronous IO in OpenCL

‒ Tc = Time for computation

‒ Ti = Time to write I/P to device To = Time to read OP for device

‒ (Assume host to device and device to host I/O is same)

Case 1: 1 Queue

Total Time = 2Tc + 2Ti + 2To

Ti Tc To Ti Tc To

Ti Tc

Case 2: 2 Queues – One device for compute

Total Time for 2 kernels and their I/O
= 2Tc + Ti + To

To

Ti Tc Toidle

Note: Idle time denotes time when no IO
occurs. The compute units of the GPU are busy

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC30

ASYNCHRONOUS I/O

 Time with 1 Queue = 2Tc + 2Ti + 2To

‒ No asynchronous behavior

 Time with 2 Queues = 2Tc + Ti + To

‒ Overlap computation and communication

 Maximum benefit achievable with similar input and output data is approximately 30% of overlap when Tc
= Ti = To since that would remove the idle time shown in the previous diagram

 Host-device I/O is limited by PCI bandwidth, so it's often not quite as big a win



Performance Benefit =
(2Tc TiTo)

(2Tc 2Ti2To)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC31

DUAL DMA ENGINE CASE

 Dual DMA engines allow simultaneous bidirectional IO.

 Possible Improvement with dual DMA Engines

‒ Baseline with one queue = 3*5 = 15T

‒ Overlap Case = 7T

 Potential Performance Benefit ~ 50%

Ti

Case 3: One device for compute but dual DMA Engines Tc ~ Ti ~ To = T

Total Time = 7T

Tc To

Ti Tc To

Ti Tc To

Ti Tc To

Ti Tc To

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC32

EXAMPLE: IMAGE RECONSTRUCTION

 Filtered Back-projection Application

 Multiple sinogram images processed to build a
reconstructed image

 Images continuously fed in from scanner to
iteratively improve resultant output

 Streaming style data flow

Reconstructed OP Image
Image Source:
hem.bredband.net/luciadbb/Reconstruction_presentation.pdf

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC33

WITHOUT ASYNCHRONOUS I/O

 Single Command Queue: N images = N(tcompute + transfer)

 Inefficient for medical imaging applications like reconstruction where large numbers of input images are
used in a streaming fashion to incrementally reconstruct an image.

 Performance improvement by asynchronous IO is better than previously discussed case since no IO from
device to host after each kernel call. This would reduce total IO time per kernel by ½

‒ Total time per image = Ti + Tc = 2T

‒ Overlapped Time = T (if Ti = Tc) shows ~ 50% improvement scope

ComputeKernel(Image0) ComputeKernel(Image1) Copy(Image1)Copy(Image1)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC34

EVENTS FOR ASYNCHRONOUS I/O

 Two command queues created on the same device

‒ Different from asymptotic analysis case of dividing computation between queues

‒ In this case we use different queues for I/O and compute

‒ We have no output data moving from Host to device for each image, so using separate command queues will also
allow for latency hiding

Compute
Queue

ComputeKernel(Image0) ComputeKernel(Image1)

I/O
Queue

ComputeKernel(Image2)

Copy(Image1) Copy(Image2)Copy(Image0

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC35

PINNED OR NON-PINNED MEMORY

 OpenCL runtime use pinned memory for DMA transfer

‒ <= 32 KB: for transfers from the host to device, the data is copied by the CPU to a runtime pinned host memory
buffer, then DMA to device

‒ > 32 KB and <= 16 MB: the host memory physical pages are pinned, then DMA

‒ > 16MB: OpenCL runtime pins host memory in stages of 16MB block, then DMA

 Pin/unpin operation has heavy overhead

‒ Try to use pre-pinned memory to reduce the overhead

‒ The performance is even worse with non-256B alignment memory

 Pre-pinned memory

‒ Use CL_MEM_ALLOC_HOST_PTR flag with clCreateBuffer() to generate pre-pinned memory buffer

‒ Then use clEnqueueCopyBuffer() to transfer data

‒ Or Use clEnqueueMapBuffer() to get a host pointer to the pre-pinned memory object

‒ Then use clEnqueueWriteBuffer() to transfer data

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC36

AGENDA

 OpenCL system performance

‒ CPU/GPU data movement

‒ OpenCL runtime overhead

 APU architecture and OpenCL optimization

 HSA and OpenCL optimization

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC37

RE-THINKING CPU+dGPU

Other Highly Parallel
Workloads

Graphics Workloads

Serial/Task-Parallel
Workloads

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC38

CHANGING THE THINKING

Today’s efficiency problems result from the way computers have evolved

Typically platform builders create innovative new hardware and offer an API for software to

access it

That tired thinking has only ever had niche success!

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC39

APU ARCHITECTURE

Data Parallel Workloads

Graphics Workloads

APP Accelerated Software
Applications

Serial and Task Parallel Workloads

Accelerated Processing Unit with

Latency Compute Unit (LCU)
Throughput Compute Unit (TCU)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC40

KEY ARCHITECTURE EVOLUTION FROM dGPU

 Host and Device share the same physical memory

‒ Both Host (CPU) and Device (GPU) has their own TLB

 On the APU, one of the key parts of the system is the data path between the GPU and memory

‒ Provides low latency access for CPU cores (optimized around caches)

‒ Random access, branchy, single threaded, scalar code

‒ Provides high throughput access for GPU cores (optimized around latency hiding)

‒ Streaming, vectorized, massively multithreaded, data-intensive cod

 Two new on-chip buses are introduced

‒ AMD Fusion Compute Link (ONION)

‒ This bus is used by the GPU when it needs to snoop the CPU cache, so is a coherent bus

‒ This is used for cacheable system memory

‒ Radeon Memory Bus (GARLIC):

‒ This bus is directly connected to memory and can saturate memory bandwidth, so is a non coherent bus

‒ This is used for local memory and USWC (uncached speculative write combine)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC41

APU PRIOR TO HSA

 Memory visibility in APU system

‒ Both CPU and GPU have their own set of page tables and TLB

‒ Both CPU and GPU can directly access the each other’s memory

‒ The memory is generally not coherent

‒ The GPU can probe the CPU cache …

‒ … but the CPU relies on the driver for synchronization (map/unmap, lock/unlock flush GPU caches)

 The current programming model is a direct consequence

‒ CPU access will page fault on a single access, and the OS will page in/out on demand

‒ GPU access is known upfront, and the driver or OS will page in/out on scheduling

 However, CPU/GPU can perform “zero-copy”

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC42

ZERO-COPY

 Many different meanings

‒ A kernel access system memory directly for either read or
write

‒ A DMA transfer access system memory directly without
copying into USWC

‒ The CPU directly writes into local memory without doing any
DMA

 OpenCL offers several mechanisms to effectively reduce
extra copying

‒ On APU , this matters even more than on discrete because
bandwidth is shared

‒ OpenGL has some driver optimizations and some proprietary
extensions

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC43

DIFFERENT DATA LOCATION AND PATH

 clCreateBuffer will give OpenCL a memory
object

‒ All GPU Kernel memory access reply on this object

 clEnqueuMapBuffer to access the memory

 Data transfer is the key point for system level
performance optimization

‒ Different flags to clCreateBuffer will result in
different heap location of the memory object

‒ Different heap location results in different transfer
speed

‒ Different memory object type results in different
OpenCL runtime overhead

‒ On APU, memory object decides zero-copy or not

 Data location

‒ Host memory

‒ Cacheable memory

‒ Uncached memory

‒ Device memory

 Data path

‒ CPU access to device memory

‒ CPU access to uncached memory

‒ CPU access to cacheable memory

‒ GPU access to device memory

‒ GPU access to uncached memory

‒ GPU access to cacheable memory

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC44

DIFFERENT DATA LOCATION AND PATH

 Data path

‒ CPU <-> Host memory

‒ Write/Read: through cache

‒ CPU <-> device memory (zero-copy)

‒ Write: WC

‒ Read: uncached read

‒ CPU <-> device memory (non zero-copy)

‒ DMA

 Data path

‒ GPU <-> cacheable host memory

‒ Write/Read: Onion bus

‒ GPU <-> uncached host memory

‒ Write/Read: Garlic bus

‒ GPU <-> device memory

‒ Write/Read: Garlic bus

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC45

THE FIRST GLANCE OF MEMORY OBJECT PERFORMANCE
LLANO APU

 Performance (may vary based on system/driver)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC46

CPU COPY TO DEVICE MEMORY

 DMA is performed via PCI-E bus

‒ For PCI-E 2.0 x 16 lane, theoretical peak bandwidth is 8GB/s in each direction

‒ For PCI-E 3.0, theoretical peak bandwidth is 16GB/s in each direction

‒ The effective bandwidth depends on the data size, usually far away from the theoretical performance

 Two buffer existing at both Host and Device side

‒ Zero-copy has only one buffer existing on either Host or Device side

‒ Explicit data copy between the sides

 Double buffering should be used to hide the time of data movement

‒ Very common on CPU + dGPU platform

DMA

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC47

CPU ACCESS TO DEVICE MEMORY

 CPU writes to device memory

‒ On Llano, this can peak at 8GB/s

‒ The data first goes through the WC buffers on the CPU, then goes to the GPU core in order to get physical address

 CPU reads from device memory

‒ Very slow!

‒ Access are uncached

‒ Only one single outstanding read is supported

 Sample code

‒ Create the buffer with the CL_MEM_USE_PERSISTENT_MEM_AMD flag

ZERO COPY

Create buffer

clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_PERSISTENT_MEM_AMD, bufSize, 0, &error);

Access buffer

clEnqueueMapBuffer(cmd_queue, buffer, CL_TRUE, CL_MAP_WRITE, 0, bufSize, 0, NULL, NULL, &error)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC48

CPU ACCESS TO CACHEABLE HOST MEMORY

 CPU accesses to cacheable memory

‒ This is the typical case in C++ code (no difference to discrete)

‒ Single threaded performance: ~8GB/s for either read or write

‒ Multi-threaded performance: ~13GB/s for either read or writeCPU reads from device memory

 The memory can be accessed by the GPU:

‒ Pages need to be made resident by the OS, and locked to prevent paging

‒ Physical pages need to be programmed into the GPU HW virtual memory page tables

‒ Implications:

‒ The two operations are done by the device driver (compute/graphics)

‒ They take time, so should be done atinitialization time if possible

‒ There is a limit to how much cacheable memory can be accessed, because itis removed from normal OS usage

ZERO COPY

Create buffer

clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PRT, bufSize, 0, &error);

Access buffer

clEnqueueMapBuffer(cmd_queue, buffer, CL_TRUE, CL_MAP_WRITE, 0, bufSize, 0, NULL, NULL, &error)

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC49

GPU ACCESS TO DEVICE MEMORY

 GPU reads from device memory

‒ This is the optimal path to memory:

‒ Radeon Memory Bus (GARLIC) avoids any cache snooping

‒ Memory is interleaved to increase throughput efficiency

‒ Kernels and shaders can saturate dram bandwidth (measured at ~17GB/s)

 GPU writes to device memory are similar

‒ Kernels and shaders can saturate dram bandwidth (measured at ~13 GB/s)

ZERO COPY

Create buffer

clCreateBuffer(context, CL_MEM_READ_WRITE, bufSize, 0, &error);

Access buffer

Directly use in the Kernel

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC50

GPU ACCESS UNCACHED HOST MEMORY

 GPU accesses to uncached memory

‒ This uses the Radeon Memory Bus (GARLIC)

‒ Memory does not have the same interleaving granularity as local memory

‒ So slightly lower performance than local memory, but faster than cacheable memory

‒ Reads can saturate dram bandwidth (measured at 12 GB/s)

‒ Writes are similarly fast but …

‒ Usually avoided, however, since CPU readsare really slow from uncached space

Create buffer

clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PRT, bufSize, 0, &error);

Access buffer

Directly use in the Kernel

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC51

GPU ACCESS CACHABLE HOST MEMORY

 GPU accesses to cacheable memory

‒ This can be used directly by a kernel or for data upload to the GPU

‒ Uses the AMD Fusion Compute Link (ONION), so snoops the cache

‒ Reads measured at ~4.5 GB/s and writes at ~5.5 GB/s

‒ Often used for sharing data with the CPU

‒ Or CPU share data among multiple GPU devices

Create buffer

clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PRT, bufSize, 0, &error);

Access buffer

Directly use in the Kernel

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC52

OTHER EXPERIMENTAL DATA

CPU W

Quoted from AMD Accelerated Parallel Processing OpenCL™ Programming Guide

Quoted from Characterization and Exploitation of GPU Memory Systems, Kenneth S. Lee

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC53

BEST DATA LOCATION AND PATH

 Allocate buffer at Device side, and access it using garlic bus

‒ This gives you best performance for GPU <-> GPU, CPU -> GPU

‒ For CPU <- GPU, it’s very slow, so use clEnqueueCopyBuffer to get a copy to read from CPU

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC54

OPENCL PERFORMANCE ON APU

 Zero-copy benefits

‒ Avoid data copy, directly use

‒ Faster bus

‒ Easy to programming

‒ Use clEnqueueMapBuffer() can get direct benefits on both APU and dGPU

 Zero-copy also works for AMD dGPU

‒ Limited by PCI-E bandwidth

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC55

AGENDA

 OpenCL system performance

‒ CPU/GPU data movement

‒ OpenCL runtime overhead

 APU architecture and OpenCL optimization

 HSA and OpenCL optimization

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC56

WE’RE IN THE “ARCHITECTURAL INTEGRATION” STAGE

System

Integration

GPU compute

context switch

GPU graphics

pre-emption

Quality of Service

Architectural

Integration

Unified Address

Space for CPU

and GPU

Fully coherent

memory between

CPU & GPU

GPU uses

pageable system

memory via CPU

pointers

Optimized

Platforms

Bi-Directional

Power Mgmt

between CPU

and GPU

GPU Compute

C++ support

User mode

scheduling

Physical

Integration

Integrate CPU &

GPU

in silicon

Unified Memory

Controller

Common

Manufacturing

Technology

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC57

HSA COMPLIANT FEATURES

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU

and GPU

GPU Compute C++

support

User mode scheduling

Support OpenCL C++ directions and Microsoft’s upcoming C++ AMP language.

This eases programming of both CPU and GPU working together to process

parallel workloads.

Drastically reduces the time to dispatch work, requiring no OS kernel transitions

or services, minimizing software driver overhead

Enables “power sloshing” where CPU and GPU are able to dynamically lower or

raise their power and performance, depending on the activity and which one is

more suited to the task at hand.

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC58

HSA COMPLIANT FEATURES

The unified address space provides ease of programming for developers to create

applications. For HSA platforms, a pointer is really a pointer and does not require

separate memory pointers for CPU and GPU.

The GPU can take advantage of the CPU virtual address space. With pageable

system memory, the GPU can reference the data directly in the CPU domain. In

prior architectures, data had to be copied between the two spaces or page-locked

prior to use. And, NO GPU memory size limitation!

Allows for data to be cached by both the CPU and the GPU, and referenced by

either. In all previous generations, GPU caches had to be flushed at command

buffer boundaries prior to CPU access. And unlike discrete GPUs, the CPU

and GPU in an APU share a high speed coherent bus.

Architectural

Integration

Unified Address Space

for CPU and GPU

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC59

GPU tasks can be context switched, making the GPU a multi-tasker. Context

switching means faster application, graphics and compute

interoperation. Users get a snappier, more interactive experience.

As more applications enjoy the performance and features of the GPU, it is

important that interactivity of the system is good. This means low latency

access to the GPU from any process.

With context switching and pre-emption, time criticality is added to the tasks

assigned to the processors. Direct access to the hardware for multi-users or

multiple applications are either prioritized or equalized.

FULL HSA FEATURES

System

Integration

GPU compute context

switch

Quality of service

GPU graphics pre-

emption

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC60

KAVERI FROM OPENCL PROGRAMMER’S PERSPECTIVE

 Fundamental architectural changes!

‒ Bring “HSA” into reality, giving you infinite imaginary space

‒ First time, OpenCL programmer can take advantage of entire pageable memory space

‒ Access data directly without moving it

‒ Supporting more data structure and programming pattern

‒ Better performance with less programming efforts

 First generation APU with “GCN” GPU architecture

‒ Optimized for generation purpose computing workloads

‒ Increasing GPU horsepower

 Essential architecture for all AMD platform, a “OpenCL style”

‒ Covering from embedded, mobile, desktop to server

 Taking performance/watt as the first priority

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC61

INTRODUCING HSA

SERIAL

WORKLOADS

PARALLEL

WORKLOADS

hUMA (MEMORY)

APU

ACCELERATED PROCESSING UNIT

An intelligent computing architecture that enables CPU, GPU and other processors to work in harmony
on a single piece of silicon by seamlessly moving the right tasks to the best suited processing element

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC62

HSA ARCHITECTURE

CPU

GPU

Audio
Processor

Video
Hardware

DSP

Image
Signal

Processing

Fixed
Function

Acctr

Encode
Decode

Sh
ar

ed
 M

em
o

ry
 C

o
h

er
en

cy
,

U
se

r
M

o
d

e
Q

u
eu

es

Full programming language support

User mode queueing

Heterogeneous unified memory
access (hUMA)

Pageable memory

Bibirectional coherency

Compute context swtith and
preemption

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC63

HSA SOLUTION STACK

Application SW

Drivers

Differentiated HW CPU(s) GPU(s)
Other

Accelerators

HSA Finalizer

Legacy

Drivers

Application

Domain Specific Libs

(Bolt, OpenCV™, … many others)

HSA Runtime

DirectX

Runtime

Other

Runtime

HSAIL

GPUISA

OpenCL™

Runtime

HSA Software

Computing hardware
A software compilation stack
A user - space runtime system
Kernel - space system components

Make GPU easily accessible
Support mainstream languages, expandable to domain
specific languages
Complete GPU tool-chain, Programming & debugging &
profiling like CPU does

Make compute offload efficient
Direct path to GPU (avoid Graphics overhead)
Eliminate memory copy, Low-latency dispatch

Make it ubiquitous
Drive HSA as a standard through HSA Foundation
Open Source key components

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC64

GET BENEFITS FROM HSA-FEATURED KAVERI
KERNEL ENQUEUE

Application / Runtime

CPU2CPU1 GPU

 Enables the HSA CU to address new workload classes, beyond the classic static gridded algorithms.

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC65

BENEFITS FROM HSA-FEATURED KAVERI
ACCELERATED DISPATCH LATENCY

How compute dispatch operates
today in the driver model

How compute dispatch improves
tomorrow under HSA

| INTRODUCTION TO OPENCL | OCTOBER 23, 2013 | PUBLIC66

KAVERI-ORIENTED ALGOS

 Those algo. who need large data set

 Those algo. who has heavy CPU/GPU data movement

 Those algo. who has less Kernel time with larger CPU/GPU communication time

 Those software who has complex and settled data structures

 Those software who want more programming model

‒ For example, a producer/consumer pattern

GENERAL IDEAS

THANKS!

